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1. Introduction

It was shown in 2002 that there is a close relation-
ship between machine learning and reproducing ker-
nel theory?. A covariance matrix in Bayesian regres-
sion, which is composed of kernel functions, is pre-
sented as a kernel matrix in regression?~¢. The Gauss-
ian process regression and interpolation based on the
Bayesian approach give the predictive distribution?~6.

It is interesting to note that at almost the same time
in 2005 Green functions to boundary value problem for
differential equations, which are response functions
for impulses, were shown to be reproducing kernels of
suitable Hilbert spaces? ®.

The above two results suggest the relationship be-
tween Green functions and kernel functions in ma-
chine learning.

The purpose of this paper is to clarify roles of Green
functions as a Gaussian process regression algorithm.
In particular, a covariance matrix composed of normal-
ized Green functions is proposed. By applying Bayesian
approach, the covariance matrix provides a predictive

distribution.
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2. Application of Green function to Gaussian
process regression

We first survey the result of Kametaka? ® in which
Green function for a simple boundary value problem is
a reproducing kernel for a suitable Hilbert space. We
here adopt the normalized Green function as a kernel
function of Gaussian process regression and propose a
new regression algorithm based on Green function

theory.

2.1 Green function
We start with the following boundary value problem
of 2nd order linear ordinary differential equation:
{—%+a2u=w(x) O<x<1) )
u(0)=u(1)=0
where a is a nonnegative constant and w(x) is an
external force term. This equation stands for a bend-
ing of a string supported by a uniformly distributed
spring with spring constant a?. The above problem is
the simplest but also the most important example of
boundary value problems?. The solution formula of
Eq. (1) is given by
u(x) = [; 6, y) w(y)dy, @
where G(x,y) is a Green function defined by

Gx,y) =Gla;xy) =
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sinh(a min(x,y)) sinh(a (1—max(x,y)))

asinha (a > O) . (3)

min(x, y)(l — max(x, y)) (a=0)
Let H be a function space defined by
H= {u|u, v’ € 12(0,1),u(0) = u(1) = 0}, (4)
equipped with an inner product
(u,v)y = fol(u’(x)v’(x) + a’u(x)v(x))dx. (5)
It should be noted that (H,(:,")y) is a Hilbert space.
Kametaka et al. showed that G(x,y) is a reproducing
kernel of H?-®. In other words, the following two
properties hold:
() If one fixes y € [0,1], G(x,y), as a function of x,
belongs to H.
(ii) For all u €H, the following reproducing relation
holds:
W GC.y)u
= fol(u’(x)axG(x,y) +a?u(x)G(x,y))dx =u(y). (6)
We consider the case a > 0. Since G(x,y) is non-
negative, L' norm of a cross section Green function

G(x,y) is calculated as follows:

1 1
Ly = L) =f0 |G(x,y)|dx=foc(x.y)dx

=L (1 — cosh(ay) + {cosha-1) sinh(ay) Sinh(ay)). (7)

a? sinha
We also define G(x,y) as Green function divided by
its L' norm

G(xy)
Li(y)

G(x,y) = (b<y<1), (8)

which satisfies the relation
f01G~(x,y) dx = 1. (9)
We call the function G(x,y) the normalized Green

function hereafter. Example of G (x,y) is shown in Fig.

1, which means the normalized response function by
the impulse at point y. Note that G(0,y) = G(1,y) =0
holds in accordance with the boundary condition.
Together with the relation between machine learn-
ing and reproducing kernel theory?, we can expect an
application of Green function theory to Gaussian

process regression.

Figure 1 The plot of normalized Green function G (x,y) =
G(a;x,y) with a = 2.88. (left) 2-dimensional contour,
(right) 3-dimensional plot.

2.2 Gaussian process

In this subsection we review Gaussian process? ~6.
For a given set of input and output data
(x1,y1), (x2,¥2), -, (xn, yn), Gaussian process regres-
sion is one of the algorithms to infer a function y =
f(x). Generally input variable x is a multi-
dimensional vector, however we deal with a one-
dimensional real variable x hereafter.

In general, Gaussian process is defined as a proba-
bility distribution over function f(x) such that the
set of values of f(x;), f(x), , f(xy) evaluated at an
arbitrary set of points x;, x,,---, xy has a Gaussian
distribution. A key point of Gaussian process is that
the joint distribution of N function values f(Xy) =
(f(xp), fxz), -+ ,f(xN))T for input variable Xy =
{x1, x5,-+, xy} 1is specified by
f(XN)NN(ﬂ(XN)v V(XN:XN))v where p(Xy) =
(u(xy), u(xz), -, u(xy))T isan N dimensional mean
vector and V(Xy,Xy) isan N X N covariance matrix.
Each element of the covariance matrix v(x,x") is
equal to a kernel function!®: 1 We can select a vari-
ety of kernel functions. The choice of kernel function
and mean u(x) = uy(x) determines the prior distri-
bution over the function f, before observing any data.
In the absence of prior knowledge, the mean is defined
by uo(x) =0 in general.

In order to apply Gaussian process to the problem of
regression, Gaussian noise is taken into account on
the observed value y = (y1,¥,, -, yn)T, which are
given by y; = f(x;) +¢ (i =1,2,---,N), where € isa
random noise variable whose value is chosen inde-
pendently for each observation. It is assumed that the
noise processes have a Gaussian distribution as,

e~N(0, p).
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2.3 Gaussian process regression with the Green

function kernel

In this subsection we apply the normalized Green
function to Gaussian process regression? ~® based
upon Bayesian inference. Given the data set
D={(x1,¥1), (x2,¥2), -, (xn,¥n)} of N observations,
where Xy = {xq,x,,:+,xy} 1s an input variable and
¥y =Y, Yn)T is an observed value, we consider
the following problem:

Problem: Using Green function kernel, predict M
dimensional output variable y* = (y;,y3, -, yi)" for
a new input variable Xy = {x{, x5, -, x3,}.

We assume the stochastic process governed by
Gaussian process. First, we consider the prior distri-
bution of f. We apply the normalized Green function
as a kernel function v(x,x") = G(x,x") and set mean
u(x) = uy(x), which specify the prior distribution of
Gaussian process. Next we consider the posterior dis-
tribution. We apply the normalized Green function to
regression. We also assume the Gaussian noise €on
the observed N values.

In order to obtain the posterior distribution of func-
tion value f(Xy) = (f(xD), f(x3), - ,f(x,’(,,))T for new
input variable Xj; as the conditional distribution
p(f(X3)|y), we consider the joint prior distribution of
y and f(X;;). By adopting the Green functions as
kernel functions of a covariance matrix, first the dis-

tribution of function values

f(XN) = (f(xl)vf(xZ)v"'!f(xN))T is given as

FXn)~ N(po(Xy), HXy, Xn)) (10)

Ho(Xn) = (1o (1), po(x2), "'rHO(xN))T (11)
6(.7(1,)(1) G(lexN)

HXy, Xy) =( ¢ N , (12
G(xy,x1) G (xn, xn)

where p,(Xy) is a mean vector, and H(Xy,Xy) is an
N X N covariance matrix whose (i,j)-th element is
the normalized Green function G(x;,x;). Adding
Gaussian noise process e~N(0,p) to f(Xy), as y; =
f(x)+e(@=1,2,,N), we obtain the distribution of
y governed by

¥y~ N(uo(Xy), HXy, Xy) + pIy), (13)

(HXn, Xy) + pIy)ij = G(xi,%7) + pby
(i,j=1,2,-,N) (14)

where Iy denotes the N X N unit matrix and §;; is
the Kronecker delta.
Next the function value f(Xj) for a new input

variable X, is governed by a Gaussian distribution:

F G~ N (o (Xar), H( X3y, Xip)) (15)

Bo(Xa) = (ko (xD), o (x3), -+, o xa )™ (16)
G(x1,x1) G (x1, %31)

HX X)) =| i o 17)
G(xp, x1) G (xp Xpp)

A covariance matrix between f(Xy) and f(Xy) is
given by H(Xy,Xy), whose (i,j)-th entry is
G(xi,x]-*) (i=1,2,--,N,j=1,2,---,M). Therefore, we
obtain the joint prior distribution of y and f(Xy)

given as follows:

()~ w (. (T el o)), g

fu =&, (19)

Hon = Ho(Xn), (20)

Hom = Ho(Xpp), 21)

Hyn = HXy, Xy), (22)

Hyy = HXy, X5y, (23)
5‘(x1,x;’{) G(xpx;t)

Hyw =HXyn,Xy) =| ¢ o (24)
G(xy,x1) G (xy, xp)
G(x1,x1) G(xi,xy)

Hyny=HXy, Xy) =( o , (25)
G (xp,%1) G (xp, xn)

where Eqs. (19)-(25) is introduced for simplicity of
notation. Hyy and Hyy are NXM and M XN co-
variance matrices composed of the normalized Green
function kernel, respectively.

Applying the results in terms of the partitioned co-
variance matrix?, we obtain the conditional distribu-

tion p(fu|y), if u(x) =0 holds, given as
-1
p(fuly) =N (HM,N(HN,N + PIN) ¥y, Hum —

Hy o (Hyp +pIn) "y ). 26)

Adding Gaussian noise & to fy, the distribution of
predictive value y* is given as

p* X, D) = p(yly) = N(& £) @7

i =Hyn(Hyy + PIN)_IJ’ (28)

L= (Hum + ply) — HM,N(HN,N + pIN)_lHN,Ma (29)

where p(y*|Xy, D) represents the predictive distribu-

tion of y* for new input variable Xj; and the ob-
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served data set D, fi is an M dimensional mean
vector, and £ isan M X M covariance matrix. The
second term of Eq. (29) represents a shift by existence
of observation data D, and is regarded as a contribu-
tion from off-diagonal block matrices Hyp and Hyy
of Eq. (18). The diagonal entries of covariance matrix
£ are equal to entries of a predictive variance vector
V=(V,, Vy, -, V)T with its i-th entry given by:
Vi=2; =G/, x)) +p—hyn;(Hyn + pIN)_th,M,i
(i=12-,M), (30)
Ry = (GO, %), GO, x5), -+, Glxi, xy)) - (31)
hyp; = (G(xl,xi*),(j(xz,xi*), "':é(xN'xi*))T (32)
where hj;y; is an i-th row vector of the matrix Hyy
and hyp; is an i-th column vector of the matrix
Hy . Note that each entry of the mean vector @i and
variance vector V is a point-wise function of x;. We
also introduce a standard deviation vector s =

(51,52, , su)7, where s; =/V; (i=1.2,,M).

2.4 Learning the hyperparameters of Green function
kernel

In the case of the normalized Green function, a set
of hyperparameters is 8 = (a, p), which determines
the predictive distribution p(y*|X;;, D) specified by
mean and covariance matrix of Eqgs. (28) and (29). In
order to infer the predictive distribution p(y*|X;;, D)
we estimate the set of hyperparameters 6 = (a,p) by

maximizing log likelihood, given as follows:

1=100) =logp(y*|Xs,D,0)

1 1
= _EyT(HNN +ply) 'y - EIOg det (Hyy + ply)

- glog 2T (33)

The parameter a is contained in the normalized
Green function G(x,x") = G(a:x,x") of Eq. (8) in the
covariance matrix. A data set D is composed of input
variable Xy and observation y, and Xy are substi-

tuted to the covariance matrix Hyy.
3. Numerical results

In this section, we present numerical results, which
are performed by Python 3.7. We put a difference in-
terval A= 0.01 for variable x* in (0,1), and take an

input variable Xj, = {x{,x3,+,xy} as x; =0.01i (i =

1,2,::-,99) or equivalently M = 99, throughout this

section. We also give N = 15 data.

3.1 Green function basis regression
We present numerical results concerning the ap-
plication of Green function to a Gaussian process re-
gression algorithm. Hereafter, we call this regression
algorithm “the Green algorithm”, for short. The pre-
dictive distribution of y* of Egs. (27)-(29) by Green
algorithm is obtained from observation data set D,
kernel function G(x,x") of Eq. (8) and the variance of
Gaussian noise p. We consider two kinds of observed
data sets D; and D, provided as N = 15 observations.
D = {(x1,y1), (x2,¥2), -+, (15, ¥15)}, (34)
Xy = Xys = {4, %9, -+, X15}, x; = 0.1 +%(i -1) (35)
Di:y; = F(x),F(x) = 7(1 —exp(—5|x — O.SI))
(i=1,2--,15) (36)
D,:y; = F(x;) + randomness (i =1,2,---,15) (37)
The above F(x) possesses a cusp at x = 0.5.
Concerning the kernel function and the noise, we
search for a set of parameters 6 = (a, p), which at-

tains maximum of log likelihood [ of Eq. (33).

3.2 noise free p = 0 fixed case

First we show the noise free p = 0 fixed case. Figure
2 shows a dependence of a log likelihood [ on the
parameter a, and the predictive distribution
p(y*| Xy, D1). Left figure shows that | attains its
maximum at a = 2.88. Table I shows [ takes the
maximum value [ = —24.79 at a = 2.88. Right figure
of Fig. 2 illustrates the predictive distribution
p(¥*| Xy, D1), which means posterior distribution of
¥ =Ly, Vee)T for input variable Xj, =
{x1,x3,+,y50} if data set D; is observed. The shaded
region spans between [y — s, u + s] in the vertical
direction. It is observed that the span of the shaded
region depends on x* and is the smallest in the
neighborhood of the data points.

In Fig. 3, we put a = 2.88. Figure 3 shows each
term of the variance V; = V(x;) of Eq. (30). The first
term G(x;,x;), which is shown as a black curve, is
equivalent to the diagonal value of Fig. 1. The second
term of Eq. (30), hL’N’iHN_N_th_M_i in p =0 case,

represents a shift by observation of data D,, corre-
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sponding to the contribution of off-diagonal block ma-
trix of covariance matrix of Eq. (18). Contribution of
the second term is as large as the first term in the
neighborhood of data points, but is smaller at a dis-
tance of data points. Hence, the variance V is smaller
if x; is closer to the data points and larger if x; is
further. This means that the precision increases near
data points due to the observation of D,. Concerning
the value of V in Fig. 3 and that of 2s, which is a span
of the shaded region [u — s, u + s] in Fig. 2, the equality
2V/V = 25 holds.

Figure 4 shows a-dependence of the first and the
second term of V; = V(x}) in Eq. (30) at x* = 0.19
and 0.5 in the p = 0 case. We select x* =0.19 as a
middle position between data, and x* = 0.5 as a data
point. At x* = 0.19 the first term G(x;,x;) is mono-
tone increasing with respect to a, and the second
term (the blue curve ) is convex upward. Whereas at
x* = 0.5 the first term and the second one ( the red
curve) are the same, and are monotone increasing

with respect to a.

X *

Figure 2 (left) a-dependence of | inthe p = 0 fixed case by
Green algorithm applied to data D,. Maximum value is
l=-2479 at a = 2.88. (right) The illustration of
p(y*| Xy, D1) with (a,p) = (2.88,0). In both p =0 fixed
case and changing p case, the same distribution is ob-
tained. The blue curve: the predictive mean fi. The
shaded region: the correspondence to mean plus and
minus s. Solid circles : data set D,. The green curve:
the function F(x*) on which observation data set D,
exists.

x*

Figure 3 Each term of variance V of Eq. (30) as a point wise
function of x* inthe (a,p) = (2.88,0) case by Green
algorithm applied to data D;. The black curve : the first
term G(x;,x;) of Eq. (30). The blue curve : the second
term hj, y Hyn "Ry, of Eq. (30). The red curve: the
variance V; = G(x},x;) — hAT,,,N,iHNVN’th,M,i as a point
wise function of x;.
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Figure 4 a-dependence of the firstterm G (x;,x;) and second
term hL,N,iHN,N"hN,MVi of variance V(x;) of Eq. (30) at
x*=0.19 and 0.5 in p =0 case by Green algorithm
applied to data D,. The black curve: the first term
((0.19,0.19). The blue curve: the second term

hL,N,iHNVN’th,M,i at x* = 0.19. The green curve: vari-

ance V(0.19). The red curve: the first term G (0.5,0.5),

which is equal to the second term. Therefore variance

V(0.5), difference between the first and second term, is
exactly equal to zero.

Table | logarithm likelihood [ with optimized hyperparameters
Data sets Green algorithm Gaussian algorithm
D, l=-2479 l=-26.35
(p =0fixed) |a =288 o =0.07
D, l=-2479 l=-21.64
(a,p) = (2.88,0.0) (0,p) = (0.12,0.1)
D, l=-30.99 l=-3252
(p =0fixed) |@ =561 o =10.061
D, 1 =-30.00 l=-30.29
(a,p) =(0.01,0.8) (o,p) = (0.20,1.0)

3.3 Comparison with Gaussian kernel regression in
the noise free p = 0 fixed case
We here compare the results of Green algorithm
obtained so far with the case of Gaussian kernel
function, which is most widely used. We here call this
algorithm “the Gaussian algorithm”, for short. As in
the case of normalized Green function, we here adopt

a normalized Gaussian kernel function,

exp (— (x_xl)z). (38)

202

1
v(x,x") = =y

The parameter ¢ of Eq. (38) corresponds to parame-

ters 6,0, of a typical Gaussian kernel function

2
01 exp (—%),2% 9 as 202 =0, and ﬁ = 0.

We search for a set of hyperparameters 8 = (o, p),
which attains maximum of log likelihood 129,

Figure 5 shows o-dependence of log likelihood [ in
the noise free p = 0 fixed case of Gaussian algorithm,
and the predictive distribution p(y*|X,;, D1). Left fig-
ure shows the value of [ increasesif 0 < o < 0.07
and attains its maximum value | = —=26.35 at 0 =

0.07 and then decreases rapidly. The maximum value
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of | is also shown in Table I. Right figure shows a
predictive distribution in the case of Gaussian kernel,
which is smoother than the Green kernel.

Comparing Green and Gaussian algorithm in the
case of p = 0 fixed for data D; of Table I, one finds
that [ is larger in the Green algorithm case. The
a-dependence of | shows an obvious peak in Green
algorithm case. On the other hand, [ changes rapidly
in the Gaussian case. From Figs. 2 and 5, we can ob-
serve that the blue curve of mean fi of Green algo-
rithm coincides with the green curve of the function
F(x*) better. The Green algorithm is considered to be
suitable for predicting the function which possesses
cusps. This fact is reflected by the fact that G(x,y)
has a pointed peak at x = y whereas Gaussian func-

tion is a smooth function.

00 02 04 06 08 10
X*¥

Figure 5 (left) o-dependence of [ inthe p =0 fixed case by
Gaussian algorithm applied to data D,. Maximum value is
1l =-26.35 at o = 0.07. (right) The illustration of
p(y*|Xs, D;) with (o,p) = (0.07,0). The blue curve: the
predictive mean fi. The shaded region: the correspond-
ence to mean plus and minus s. Solid circles: data set
D;. The green curve: the function F(x*).

3.4Thecaseof p=>0

Next, we take a Gaussian noise term p into ac-
count. In this case we change a pair of hyperparame-
ters 0 = (a,p) in the Green algorithm, and 6 = (g, p)
in the Gaussian algorithm for data D;.

In the Green algorithm, Fig. 6 shows a-dependence
of | for p =0.0,0.1,0.2,:-,1.0. For every fixed p, [
has a maximum with respect to a. The maximum
value of [ is monotone decreasing with respect to p.
Hence [ takes its maximum [ = —24.79 at (a,p) =
(2.88,0.0). Therefore predictive distribution p(y*|Xs;, D;)
by Green algorithm in the case of learning two pa-
rameters a and p is the same as thatinthe p=0
fixed case of Fig. 2.

Figure 7 shows o-dependence of [ under the Gaussian

algorithm for p = 0.0,0.1,0.2, -+, 1.0, and the predictive

distribution p(y*|Xy, D1) with (o,p) = (0.12,0.1). Left
figure shows that [ takes its maximum [ = —21.64 at
(o,p) = (0.12,0.1), which is also shown in Table I.
Right figure shows that mean fi?-5 gets smoother
than in the case of p = 0 and shaded region is wider
and smoother.

Comparing Green algorithm and Gauss algorithm,
the maximum value of | of Green algorithm gets a
little smaller than that of Gaussian algorithm, as is

shown in Table I.

v o2 ;\:\‘\ MDA Q
a 8 0 00
Figure 6 a and p-dependence of | by Green algorithm applied to
data D,. Maximum value is [ = —24.79 at (a,p) =
(2.88,0.0).
\ 5
. \ 5,
\ gy ]
5 200 2
250 )
{ 300 N
:\_ os‘” 0o 02 04 X* 06 08 10
2 4\:\ MMQ
o B

Figure 7 (left) o and p-dependence of | by Gaussian algorithm
applied to data D,. Maximum value is | = —21.64 at
(0,p) = (0.12,0.1). (right) The illustration of p(y*|X;, D;)
with (o, p) = (0.12,0.1). The blue curve: the predictive
mean fi. The shaded region: the correspondence to
mean plus and minus s. Solid circles: data set D,. The
green curve: the function F(x*).

3.5 Introduction of randomness associated with y

We finally introduce randomness in y of observa-
tion data D, which is written as D,, following the
section 6.4.2 in the reference?. The dependences of [
on the hyperparameters by Green and Gaussian algo-
rithms are shown in Figs. 8 and 9.

We first investigate the Green algorithm. Left fig-
ure of Fig. 8 shows a-dependence of [ for p = 0.0,0.1,
--+,1.0. Table I shows that [ in the p = 0 fixed case
takes its maximum [ = —30.99 at a = 5.61. If we

change p, [ takesits maximum [ = —30.00 at
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(a,p) = (0.01,0.8). Right figure of Fig. 8 represents the
predictive distribution p(y*|Xy, D,) in the (a,p) =
(0.01,0.8) case.

We next investigate the Gaussian algorithm. Left
figure of Fig. 9 shows o-dependence of [ for p =
0.0,0.1,0.2,--+,2.0. Table I shows that [, with p =0
fixed, takes its maximum [ = —32.52 at o = 0.061. If
we change p, | takes its maximum [ = —30.29 at
(g,p) = (0.20,1.0). Right figure of Fig. 9 represents the
predictive distribution p(y*|Xy, D;) in the (o,p) =
(0.20,1.0) case.

Comparing these two algorithms in Figs. 8 and 9,
and Table I, we find that in both p = 0 fixed case and
the case of changing p, | takes a larger value in the
Green algorithm case than in the Gaussian algorithm
case.

In the cusp cases, Green algorithm shows almost
the same or a little better performance, compared

with Gaussian algorithm.

Figure 8. (left) a and p-dependence of [ by Green algorithm
applied to data D,. Maximum value is [ = —30.00 at
(a,p) = (0.01,0.8). (right) The illustration of p(y*|X;;, D,)
with (a, p) = (0.01,0.8). The blue curve: the predictive
mean fi. The shaded region: the correspondence to
mean plus and minus s. Solid circles : dataset D,.
The green curve: the function F(x*).

Figure 9. (left) o and p-dependence of [ by Gaussian algorithm
applied to data D,. Maximum value is | = —30.29 at
(o, p) = (0.20,1.0). (right) The illustration of p(y*|X;;, D,)
with (g, p) = (0.20,1.0). The blue curve: the predictive
mean fi. The shaded region: the correspondence to
mean plus and minus s. Solid circles: data set D,. The
green curve: the function F(x*).

4. Discussions

In order to take more information concerning co-
variance of y between x; and x;, we now investigate
the covariance matrix £ of Eq. (29) hereafter. Gener-
ating a mesh of M = 99, we introduce 99 X 99 matrix
£=(

as a function in x; = 0.01i and x; = 0.01j (i,j =

ii'j)lsi,js% whose (i,j)-th entry is also regarded
1,2,::-,99). That is to say, the covariance matrix of the
predictive distribution is defined as a point-wise
function, which is given as:
S = f(xi*,xj*) = G(xi*,xj*) + pé;
— hiyn i (Hyn + pIN)_th,M,j
= G(0.015,0.01)) + pS;; — hYy s (Hyw + ply) By
(i, =12,-+,99). (39)
Figure 10 shows the covariance matrix £; ; of Eq.
(39) corresponding to predictive distribution
p(¥*| Xy, D) of Fig. 2, where x,y,z directions corre-

spond to x; = 0.01i, x; = 0.01j, and %, i, respectively.

Jo
Left and right figures are two-dimensional contour
and three-dimensional plot of covariance at (x;, x;),
respectively. Due to the observation of data D;, co-
variance between x; and x; localizes around x; = x;

line. The diagonal value at x; = x; is equal to the
variance, and its square root, which is a standard
deviation, corresponds to the span of shaded region of
Fig. 2 as a point-wise function of x;. Figure 11 shows
the covariance matrix for p(y*|X;;, D,) of Fig. 8. Since
p # 0, the values on diagonal x; = x; points contain

the noise term p.
5. Conclusion

Let us summarize the obtained results. In this pa-
per, we proposed and implemented a regression algo-
rithm based on Green function theory. We propose a
covariance matrix composed of the normalized Green
function. By applying Bayesian approach, the covar-
iance matrix gives a predictive distribution. The
Green algorithm shows almost the same or slightly
superior performance compared with Gaussian algo-

rithm if f(x) possesses cusps.



56 T EABER A TE

Acknowledgment

The author would like to thank S. Kamei and I.
Kayo of Tokyo University of Technology, S. Tomizawa
of Toyota Technological Institute, and T. Miura of
National Institute of Advanced Industrial Science and

Technology for useful comments.

L BN
“#
e
08
" 04
#

™ 05

06 ra 03
* 4 04

>3 "
04 # 02 03
#
>

- 02

02 I'd 01
- 01

[ | 0
02 04 06 08 00

*
X;

Figure 10. The plot of covariance matrix Eq. (39) of predictive
distribution p(y*|Xy, D,) of Fig. 2 with (a,p) =
(2.88,0) by Green algorithm. (left) 2-dimensional con-
tour, (right) 3-dimensional plot.
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Figure 11.  The plot of covariance matrix Eq. (39) of predictive
distribution p(y*|X;;, D,) of Fig. 8 with (a,p) =
(0.01,0.8) by Green algorithm. (left) 2-dimensional
contour, (right) 3-dimensional plot.
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