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グリーン関数理論に基づく共分散行列のガウス過程回帰への応用 

永 井 朋 子＊ 

   

  The covariance matrix of Green functions and its application to Gauss-
ian Process Regression 

Tomoko NAGAI＊ 

 

AAbbssttrraacctt  

2 階常微分方程式の境界値問題のグリーン関数を規格化し，ガウス過程回帰の新しいカーネル関数として提案した．

ベイズ推定に基づき，観測データに対する条件付き分布として予測分布を求めた．カスプのある場合には，グリーン関

数カーネルの対数尤度は広く利用されるガウスカーネルのそれより，大きなあるいは同程度の値を示し，よい回帰結果

が得られた． 
KKeeyywwoorrddss: グリーン関数，共分散行列，ガウス過程回帰 

 

1．Introduction 

It was shown in 2002 that there is a close relation-
ship between machine learning and reproducing ker-
nel theory1). A covariance matrix in Bayesian regres-
sion, which is composed of kernel functions, is pre-
sented as a kernel matrix in regression1)~6). The Gauss-
ian process regression and interpolation based on the 
Bayesian approach give the predictive distribution1)~6). 

It is interesting to note that at almost the same time 
in 2005 Green functions to boundary value problem for 
differential equations, which are response functions 
for impulses, were shown to be reproducing kernels of 
suitable Hilbert spaces7), 8). 

The above two results suggest the relationship be-
tween Green functions and kernel functions in ma-
chine learning.  

The purpose of this paper is to clarify roles of Green 
functions as a Gaussian process regression algorithm. 
In particular, a covariance matrix composed of normal-
ized Green functions is proposed. By applying Bayesian 
approach, the covariance matrix provides a predictive 
distribution.  
 

2．Application of Green function to Gaussian  
process regression 

We first survey the result of Kametaka7), 8) in which 
Green function for a simple boundary value problem is 
a reproducing kernel for a suitable Hilbert space. We 
here adopt the normalized Green function as a kernel 
function of Gaussian process regression and propose a 
new regression algorithm based on Green function 
theory.  
 

2.1 Green function 

We start with the following boundary value problem 
of 2nd order linear ordinary differential equation: 

�−
𝑑𝑑𝑑𝑑2𝑢𝑢𝑢𝑢
𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑2

+ 𝑎𝑎𝑎𝑎2𝑢𝑢𝑢𝑢 = 𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥)  (0 < 𝑥𝑥𝑥𝑥 < 1)
𝑢𝑢𝑢𝑢(0) = 𝑢𝑢𝑢𝑢(1) = 0              

       (1) 

where 𝑎𝑎𝑎𝑎 is a nonnegative constant and 𝑤𝑤𝑤𝑤(𝑥𝑥𝑥𝑥) is an 
external force term. This equation stands for a bend-
ing of a string supported by a uniformly distributed 
spring with spring constant 𝑎𝑎𝑎𝑎2. The above problem is 
the simplest but also the most important example of 
boundary value problems9). The solution formula of 
Eq. (1) is given by  

𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥) = ∫ 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)1
0 𝑤𝑤𝑤𝑤(𝑦𝑦𝑦𝑦)𝑑𝑑𝑑𝑑𝑦𝑦𝑦𝑦,            (2)  

where 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is a Green function defined by    
𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝐺𝐺𝐺𝐺(𝑎𝑎𝑎𝑎; 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 
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�
sinh�𝑎𝑎𝑎𝑎 min(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)� sinh�𝑎𝑎𝑎𝑎 �1−max(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)�� 

𝑎𝑎𝑎𝑎 sinh𝑎𝑎𝑎𝑎
(𝑎𝑎𝑎𝑎 > 0)

min(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)�1 − max(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)�     (𝑎𝑎𝑎𝑎 = 0)
 .      (3)  

Let H be a function space defined by 
H= {𝑢𝑢𝑢𝑢|𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢′ ∈ 𝐿𝐿𝐿𝐿2(0,1), 𝑢𝑢𝑢𝑢(0) = 𝑢𝑢𝑢𝑢(1) = 0},         (4) 

equipped with an inner product  
 (𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣)H = ∫ (𝑢𝑢𝑢𝑢′(𝑥𝑥𝑥𝑥)𝑣𝑣𝑣𝑣′(𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎2𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥)𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥))𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥1

0 .     (5) 
It should be noted that (H,(∙,∙)H) is a Hilbert space. 
Kametaka et al. showed that 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is a reproducing 
kernel of H7), 8). In other words, the following two 
properties hold: 
(i) If one fixes 𝑦𝑦𝑦𝑦 𝑦 [0,1], 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦), as a function of 𝑥𝑥𝑥𝑥, 
belongs to H. 
(ii) For all 𝑢𝑢𝑢𝑢 𝑢H, the following reproducing relation 
holds: 

    (𝑢𝑢𝑢𝑢, 𝐺𝐺𝐺𝐺(∙. 𝑦𝑦𝑦𝑦))H 

= ∫ �𝑢𝑢𝑢𝑢′(𝑥𝑥𝑥𝑥)𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) + 𝑎𝑎𝑎𝑎2𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥)𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)�𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥1
0 = 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦).   (6) 

We consider the case 𝑎𝑎𝑎𝑎 > 0. Since 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is non- 
negative, 𝐿𝐿𝐿𝐿1 norm of a cross section Green function 
𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is calculated as follows: 

𝐿𝐿𝐿𝐿1 = 𝐿𝐿𝐿𝐿1(𝑦𝑦𝑦𝑦) = � |𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)|
1

0
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = � 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)

1

0
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 

= 1
𝑎𝑎𝑎𝑎2
�1 − cosh(𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦) + (cosh 𝑎𝑎𝑎𝑎𝑎𝑎) sinh(𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦)

sinh𝑎𝑎𝑎𝑎
�.   (7) 

We also define 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) as Green function divided by 
its 𝐿𝐿𝐿𝐿1 norm 

𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)
𝐿𝐿𝐿𝐿1(𝑦𝑦𝑦𝑦)

     (0 < 𝑦𝑦𝑦𝑦 < 1),        (8) 

which satisfies the relation 
∫ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)1
0 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 1.              (9) 

We call the function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) the normalized Green 
function hereafter. Example of 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is shown in Fig. 
1, which means the normalized response function by 
the impulse at point 𝑦𝑦𝑦𝑦. Note that 𝐺𝐺𝐺𝐺�(0, 𝑦𝑦𝑦𝑦) = 𝐺𝐺𝐺𝐺�(1, 𝑦𝑦𝑦𝑦) = 0 
holds in accordance with the boundary condition.  

Together with the relation between machine learn-
ing and reproducing kernel theory1), we can expect an 
application of Green function theory to Gaussian 
process regression.  

 

Figure 1 The plot of normalized Green function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) =
𝐺𝐺𝐺𝐺�(𝑎𝑎𝑎𝑎; 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) with 𝑎𝑎𝑎𝑎 = 2.88. (left) 2-dimensional contour, 
(right) 3-dimensional plot. 

 

2.2 Gaussian process 

In this subsection we review Gaussian process1) ~6). 
For a given set of input and output data 
(𝒙𝒙𝒙𝒙1, 𝑦𝑦𝑦𝑦1), (𝒙𝒙𝒙𝒙2, 𝑦𝑦𝑦𝑦2),⋯ , (𝒙𝒙𝒙𝒙𝑁𝑁𝑁𝑁, 𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁), Gaussian process regres-
sion is one of the algorithms to infer a function 𝑦𝑦𝑦𝑦 =

𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙). Generally input variable 𝒙𝒙𝒙𝒙 is a multi- 
dimensional vector, however we deal with a one- 
dimensional real variable 𝑥𝑥𝑥𝑥 hereafter.  

In general, Gaussian process is defined as a proba-
bility distribution over function 𝒇𝒇𝒇𝒇(𝑥𝑥𝑥𝑥)  such that the 
set of values of 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1), 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥2),⋯ , 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁) evaluated at an 
arbitrary set of points 𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 has a Gaussian 
distribution. A key point of Gaussian process is that 
the joint distribution of 𝑁𝑁𝑁𝑁 function values 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) =

�𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1), 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥2),⋯ , 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁)�𝑇𝑇𝑇𝑇 for input variable 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 =
{𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁} is specified by 
𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁)~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁), 𝑉𝑉𝑉𝑉(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁)�, where 𝝁𝝁𝝁𝝁(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) =

(𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥1), 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥2),⋯ , 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁))𝑇𝑇𝑇𝑇 is an 𝑁𝑁𝑁𝑁 dimensional mean 
vector and 𝑉𝑉𝑉𝑉(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) is an 𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 covariance matrix. 
Each element of the covariance matrix 𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) is 
equal to a kernel function10), 11). We can select a vari-
ety of kernel functions. The choice of kernel function 
and mean 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) = 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥) determines the prior distri-
bution over the function 𝑓𝑓𝑓𝑓, before observing any data. 
In the absence of prior knowledge, the mean is defined 
by 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥) = 0 in general.  

In order to apply Gaussian process to the problem of 
regression, Gaussian noise is taken into account on 
the observed value 𝒚𝒚𝒚𝒚 = (𝑦𝑦𝑦𝑦1, 𝑦𝑦𝑦𝑦2,⋯ , 𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁)𝑇𝑇𝑇𝑇, which are 
given by 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) + ε  (𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁), where ε is a 
random noise variable whose value is chosen inde-
pendently for each observation. It is assumed that the 
noise processes have a Gaussian distribution as, 
ε~𝑁𝑁𝑁𝑁(0, ρ). 
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�
sinh�𝑎𝑎𝑎𝑎 min(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)� sinh�𝑎𝑎𝑎𝑎 �1−max(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)�� 

𝑎𝑎𝑎𝑎 sinh𝑎𝑎𝑎𝑎
(𝑎𝑎𝑎𝑎 > 0)

min(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)�1 − max(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)�     (𝑎𝑎𝑎𝑎 = 0)
 .      (3)  

Let H be a function space defined by 
H= {𝑢𝑢𝑢𝑢|𝑢𝑢𝑢𝑢, 𝑢𝑢𝑢𝑢′ ∈ 𝐿𝐿𝐿𝐿2(0,1), 𝑢𝑢𝑢𝑢(0) = 𝑢𝑢𝑢𝑢(1) = 0},         (4) 

equipped with an inner product  
 (𝑢𝑢𝑢𝑢, 𝑣𝑣𝑣𝑣)H = ∫ (𝑢𝑢𝑢𝑢′(𝑥𝑥𝑥𝑥)𝑣𝑣𝑣𝑣′(𝑥𝑥𝑥𝑥) + 𝑎𝑎𝑎𝑎2𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥)𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥))𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥1

0 .     (5) 
It should be noted that (H,(∙,∙)H) is a Hilbert space. 
Kametaka et al. showed that 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is a reproducing 
kernel of H7), 8). In other words, the following two 
properties hold: 
(i) If one fixes 𝑦𝑦𝑦𝑦 𝑦 [0,1], 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦), as a function of 𝑥𝑥𝑥𝑥, 
belongs to H. 
(ii) For all 𝑢𝑢𝑢𝑢 𝑢H, the following reproducing relation 
holds: 

    (𝑢𝑢𝑢𝑢, 𝐺𝐺𝐺𝐺(∙. 𝑦𝑦𝑦𝑦))H 

= ∫ �𝑢𝑢𝑢𝑢′(𝑥𝑥𝑥𝑥)𝜕𝜕𝜕𝜕𝑥𝑥𝑥𝑥𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) + 𝑎𝑎𝑎𝑎2𝑢𝑢𝑢𝑢(𝑥𝑥𝑥𝑥)𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)�𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥1
0 = 𝑢𝑢𝑢𝑢(𝑦𝑦𝑦𝑦).   (6) 

We consider the case 𝑎𝑎𝑎𝑎 > 0. Since 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is non- 
negative, 𝐿𝐿𝐿𝐿1 norm of a cross section Green function 
𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is calculated as follows: 

𝐿𝐿𝐿𝐿1 = 𝐿𝐿𝐿𝐿1(𝑦𝑦𝑦𝑦) = � |𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)|
1

0
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = � 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)

1

0
𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 

= 1
𝑎𝑎𝑎𝑎2
�1 − cosh(𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦) + (cosh 𝑎𝑎𝑎𝑎𝑎𝑎) sinh(𝑎𝑎𝑎𝑎𝑦𝑦𝑦𝑦)

sinh𝑎𝑎𝑎𝑎
�.   (7) 

We also define 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) as Green function divided by 
its 𝐿𝐿𝐿𝐿1 norm 

𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) = 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥,𝑦𝑦𝑦𝑦)
𝐿𝐿𝐿𝐿1(𝑦𝑦𝑦𝑦)

     (0 < 𝑦𝑦𝑦𝑦 < 1),        (8) 

which satisfies the relation 
∫ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦)1
0 𝑑𝑑𝑑𝑑𝑥𝑥𝑥𝑥 = 1.              (9) 

We call the function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) the normalized Green 
function hereafter. Example of 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) is shown in Fig. 
1, which means the normalized response function by 
the impulse at point 𝑦𝑦𝑦𝑦. Note that 𝐺𝐺𝐺𝐺�(0, 𝑦𝑦𝑦𝑦) = 𝐺𝐺𝐺𝐺�(1, 𝑦𝑦𝑦𝑦) = 0 
holds in accordance with the boundary condition.  

Together with the relation between machine learn-
ing and reproducing kernel theory1), we can expect an 
application of Green function theory to Gaussian 
process regression.  

 

Figure 1 The plot of normalized Green function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) =
𝐺𝐺𝐺𝐺�(𝑎𝑎𝑎𝑎; 𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) with 𝑎𝑎𝑎𝑎 = 2.88. (left) 2-dimensional contour, 
(right) 3-dimensional plot. 

 

2.2 Gaussian process 

In this subsection we review Gaussian process1) ~6). 
For a given set of input and output data 
(𝒙𝒙𝒙𝒙1, 𝑦𝑦𝑦𝑦1), (𝒙𝒙𝒙𝒙2, 𝑦𝑦𝑦𝑦2),⋯ , (𝒙𝒙𝒙𝒙𝑁𝑁𝑁𝑁, 𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁), Gaussian process regres-
sion is one of the algorithms to infer a function 𝑦𝑦𝑦𝑦 =

𝑓𝑓𝑓𝑓(𝒙𝒙𝒙𝒙). Generally input variable 𝒙𝒙𝒙𝒙 is a multi- 
dimensional vector, however we deal with a one- 
dimensional real variable 𝑥𝑥𝑥𝑥 hereafter.  

In general, Gaussian process is defined as a proba-
bility distribution over function 𝒇𝒇𝒇𝒇(𝑥𝑥𝑥𝑥)  such that the 
set of values of 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1), 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥2),⋯ , 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁) evaluated at an 
arbitrary set of points 𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁 has a Gaussian 
distribution. A key point of Gaussian process is that 
the joint distribution of 𝑁𝑁𝑁𝑁 function values 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) =

�𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1), 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥2),⋯ , 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁)�𝑇𝑇𝑇𝑇 for input variable 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 =
{𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁} is specified by 
𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁)~𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁), 𝑉𝑉𝑉𝑉(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁)�, where 𝝁𝝁𝝁𝝁(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) =

(𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥1), 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥2),⋯ , 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁))𝑇𝑇𝑇𝑇 is an 𝑁𝑁𝑁𝑁 dimensional mean 
vector and 𝑉𝑉𝑉𝑉(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) is an 𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 covariance matrix. 
Each element of the covariance matrix 𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) is 
equal to a kernel function10), 11). We can select a vari-
ety of kernel functions. The choice of kernel function 
and mean 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) = 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥) determines the prior distri-
bution over the function 𝑓𝑓𝑓𝑓, before observing any data. 
In the absence of prior knowledge, the mean is defined 
by 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥) = 0 in general.  

In order to apply Gaussian process to the problem of 
regression, Gaussian noise is taken into account on 
the observed value 𝒚𝒚𝒚𝒚 = (𝑦𝑦𝑦𝑦1, 𝑦𝑦𝑦𝑦2,⋯ , 𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁)𝑇𝑇𝑇𝑇, which are 
given by 𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 = 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) + ε  (𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁), where ε is a 
random noise variable whose value is chosen inde-
pendently for each observation. It is assumed that the 
noise processes have a Gaussian distribution as, 
ε~𝑁𝑁𝑁𝑁(0, ρ). 
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2.3 Gaussian process regression with the Green 

function kernel 

In this subsection we apply the normalized Green 
function to Gaussian process regression1) ~6) based 
upon Bayesian inference. Given the data set 
𝐷𝐷𝐷𝐷={(𝑥𝑥𝑥𝑥1, 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2, 𝑦𝑦𝑦𝑦2),⋯ , (𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁)} of 𝑁𝑁𝑁𝑁 observations, 
where 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁} is an input variable and  
𝒚𝒚𝒚𝒚 = (𝑦𝑦𝑦𝑦1, 𝑦𝑦𝑦𝑦2,⋯ , 𝑦𝑦𝑦𝑦𝑁𝑁𝑁𝑁)𝑇𝑇𝑇𝑇 is an observed value, we consider 
the following problem: 

PPrroobblleemm:: Using Green function kernel, predict 𝑀𝑀𝑀𝑀 
dimensional output variable 𝒚𝒚𝒚𝒚∗ = (𝑦𝑦𝑦𝑦1∗, 𝑦𝑦𝑦𝑦2∗,⋯ , 𝑦𝑦𝑦𝑦𝑀𝑀𝑀𝑀∗ )𝑇𝑇𝑇𝑇 for 
a new input variable 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ = {𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥2∗,⋯ , 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ }.  

We assume the stochastic process governed by 
Gaussian process. First, we consider the prior distri-
bution of 𝑓𝑓𝑓𝑓. We apply the normalized Green function 
as a kernel function 𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) = 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) and set mean 
𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) = 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥), which specify the prior distribution of 
Gaussian process. Next we consider the posterior dis-
tribution. We apply the normalized Green function to 
regression. We also assume the Gaussian noise 𝜀𝜀𝜀𝜀 on 
the observed 𝑁𝑁𝑁𝑁 values.  

In order to obtain the posterior distribution of func-
tion value 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) = �𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1∗), 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥2∗),⋯ , 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ )�𝑇𝑇𝑇𝑇 for new 
input variable 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗  as the conditional distribution 
𝑝𝑝𝑝𝑝(𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ )|𝒚𝒚𝒚𝒚), we consider the joint prior distribution of 
𝒚𝒚𝒚𝒚 and 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ). By adopting the Green functions as 
kernel functions of a covariance matrix, first the dis-
tribution of function values  
𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) = (𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥1), 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥2),⋯ , 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁))𝑇𝑇𝑇𝑇 is given as  

𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁)~ 𝑁𝑁𝑁𝑁(𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁),𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁))        (10) 
𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) = (𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥1), 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥2),⋯ , 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁))𝑇𝑇𝑇𝑇   (11) 

𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) = �
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥1) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁)

⋮ ⋱ ⋮
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑥𝑥𝑥𝑥1) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁)

�,    (12) 

where 𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) is a mean vector, and 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) is an 
𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 covariance matrix whose (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)-th element is 
the normalized Green function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗). Adding 
Gaussian noise process ε~𝑁𝑁𝑁𝑁(0, ρ) to 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁), as 𝑦𝑦𝑦𝑦𝒊𝒊𝒊𝒊 =

𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) + 𝜀𝜀𝜀𝜀 (𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁), we obtain the distribution of 
𝒚𝒚𝒚𝒚 governed by  

𝒚𝒚𝒚𝒚~ 𝑁𝑁𝑁𝑁(𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁), 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁),    (13) 
(𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁)𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = 𝐺𝐺𝐺𝐺��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗� + 𝜌𝜌𝜌𝜌𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 

(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁) (14) 

where 𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁 denotes the 𝑁𝑁𝑁𝑁 × 𝑁𝑁𝑁𝑁 unit matrix and 𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 is 
the Kronecker delta.  

Next the function value 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) for a new input 
variable 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗  is governed by a Gaussian distribution: 

𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ )~ 𝑁𝑁𝑁𝑁(𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ), 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ))         (15) 
𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) = (𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥1∗), 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥2∗),⋯ , 𝜇𝜇𝜇𝜇0(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ ))𝑇𝑇𝑇𝑇    (16) 

 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) = �
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥1∗) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ )

⋮ ⋱ ⋮
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ , 𝑥𝑥𝑥𝑥1∗) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ , 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ )

�.   (17) 

A covariance matrix between 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) and 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) is 
given by 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ), whose (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)-th entry is 
𝐺𝐺𝐺𝐺��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗� (𝑖𝑖𝑖𝑖 = 1, 2,⋯ ,𝑁𝑁𝑁𝑁, 𝑗𝑗𝑗𝑗 = 1, 2,⋯ ,𝑀𝑀𝑀𝑀). Therefore, we 
obtain the joint prior distribution of 𝒚𝒚𝒚𝒚 and 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) 
given as follows: 

�
𝒚𝒚𝒚𝒚
𝒇𝒇𝒇𝒇𝑀𝑀𝑀𝑀

�~ 𝑁𝑁𝑁𝑁 ��
𝝁𝝁𝝁𝝁0,𝑁𝑁𝑁𝑁
𝝁𝝁𝝁𝝁0,𝑀𝑀𝑀𝑀

� , �
𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀

𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀
� �,    (18) 

𝒇𝒇𝒇𝒇𝑀𝑀𝑀𝑀 = 𝒇𝒇𝒇𝒇(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ),              (19) 
𝝁𝝁𝝁𝝁0,𝑁𝑁𝑁𝑁 = 𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁),           (20) 
𝝁𝝁𝝁𝝁0,𝑀𝑀𝑀𝑀 = 𝝁𝝁𝝁𝝁0(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ),             (21) 
𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 = 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁),           (22) 
𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀 = 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ),          (23) 

𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 = 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁, 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ) = �
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥1∗) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ )

⋮ ⋱ ⋮
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑥𝑥𝑥𝑥1∗) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ )

�  (24) 

𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 = 𝐻𝐻𝐻𝐻(𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁) = �
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥1) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁)

⋮ ⋱ ⋮
𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ , 𝑥𝑥𝑥𝑥1) ⋯ 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ , 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁)

�, (25) 

where Eqs. (19)-(25) is introduced for simplicity of 
notation. 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 are 𝑁𝑁𝑁𝑁 × 𝑀𝑀𝑀𝑀 and 𝑀𝑀𝑀𝑀 × N co-
variance matrices composed of the normalized Green 
function kernel, respectively. 

Applying the results in terms of the partitioned co-
variance matrix2), we obtain the conditional distribu-
tion 𝑝𝑝𝑝𝑝(𝒇𝒇𝒇𝒇𝑀𝑀𝑀𝑀|𝒚𝒚𝒚𝒚), if 𝜇𝜇𝜇𝜇(𝑥𝑥𝑥𝑥) = 0 holds, given as  

𝑝𝑝𝑝𝑝(𝒇𝒇𝒇𝒇𝑀𝑀𝑀𝑀|𝒚𝒚𝒚𝒚) = 𝑁𝑁𝑁𝑁 �𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁�𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁�
−1𝒚𝒚𝒚𝒚,   𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀 −

𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁�𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁�
−1𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 �.       (26) 

Adding Gaussian noise ε to 𝒇𝒇𝒇𝒇𝑀𝑀𝑀𝑀, the distribution of 
predictive value 𝒚𝒚𝒚𝒚∗ is given as  

𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷) = 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝒚𝒚𝒚𝒚) = 𝑁𝑁𝑁𝑁�𝝁𝝁𝝁𝝁�, Σ��          (27) 

𝝁𝝁𝝁𝝁� = 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁�𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁�
−1𝒚𝒚𝒚𝒚       (28) 

Σ� = (𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑀𝑀𝑀𝑀 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑀𝑀𝑀𝑀) − 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁�𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁�
−1𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀, (29) 

where 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷) represents the predictive distribu-
tion of 𝒚𝒚𝒚𝒚∗ for new input variable 𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗  and the ob-
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served data set 𝐷𝐷𝐷𝐷, 𝝁𝝁𝝁𝝁𝝁 is an 𝑀𝑀𝑀𝑀 dimensional mean 
vector, and Σ� is an 𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀 covariance matrix. The 
second term of Eq. (29) represents a shift by existence 
of observation data 𝐷𝐷𝐷𝐷, and is regarded as a contribu-
tion from off-diagonal block matrices 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 
of Eq. (18). The diagonal entries of covariance matrix 
Σ� are equal to entries of a predictive variance vector 
𝑽𝑽𝑽𝑽=(𝑉𝑉𝑉𝑉1, 𝑉𝑉𝑉𝑉2,⋯ , 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀)𝑇𝑇𝑇𝑇 with its 𝑖𝑖𝑖𝑖-th entry given by:  

𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 = Σ�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) + 𝜌𝜌𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 �𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁�

−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 
(𝑖𝑖𝑖𝑖 = 1,2,⋯ ,𝑀𝑀𝑀𝑀),  (30) 

𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 = (𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥1), 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥2),⋯ , 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁))   (31) 

𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 = (𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗), 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗),⋯ , 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗))𝑇𝑇𝑇𝑇  (32) 
where 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇  is an 𝑖𝑖𝑖𝑖-th row vector of the matrix 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 
and 𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 is an 𝑖𝑖𝑖𝑖-th column vector of the matrix 
𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀. Note that each entry of the mean vector  𝝁𝝁𝝁𝝁𝝁 and 
variance vector 𝑽𝑽𝑽𝑽 is a point-wise function of 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗. We 
also introduce a standard deviation vector 𝒔𝒔𝒔𝒔 =

(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2,⋯ , 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀)𝑇𝑇𝑇𝑇, where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = �𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  (𝑖𝑖𝑖𝑖 = 1,2,⋯ ,𝑀𝑀𝑀𝑀).  
 
2.4 Learning the hyperparameters of Green function 

kernel 

In the case of the normalized Green function, a set 
of hyperparameters is 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌), which determines 
the predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷) specified by 
mean and covariance matrix of Eqs. (28) and (29). In 
order to infer the predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷) 
we estimate the set of hyperparameters 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) by 
maximizing log likelihood, given as follows:  

𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙(𝜽𝜽𝜽𝜽) = log 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷, 𝜽𝜽𝜽𝜽 ) 

= −
1
2
𝒚𝒚𝒚𝒚𝑇𝑇𝑇𝑇(𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁)−1𝒚𝒚𝒚𝒚 𝒚

1
2

log det (𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁) 

−𝑁𝑁𝑁𝑁
2

log 2π       (33) 

The parameter 𝑎𝑎𝑎𝑎 is contained in the normalized 
Green function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) = 𝐺𝐺𝐺𝐺�(𝑎𝑎𝑎𝑎: 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) of Eq. (8) in the 
covariance matrix. A data set 𝐷𝐷𝐷𝐷 is composed of input 
variable 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 and observation 𝒚𝒚𝒚𝒚, and 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 are substi-
tuted to the covariance matrix 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁. 

3．Numerical results 

In this section, we present numerical results, which 
are performed by Python 3.7. We put a difference in-
terval ∆= 0.01 for variable 𝑥𝑥𝑥𝑥∗ in (0,1), and take an 
input variable X𝑀𝑀𝑀𝑀∗ = {𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥2∗,⋯ , 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ } as 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 0.01𝑖𝑖𝑖𝑖 (𝑖𝑖𝑖𝑖 =

1, 2,⋯ , 99) or equivalently 𝑀𝑀𝑀𝑀 = 99, throughout this 
section. We also give 𝑁𝑁𝑁𝑁 = 15 data.  

 
3.1 Green function basis regression 

We present numerical results concerning the ap-
plication of Green function to a Gaussian process re-
gression algorithm. Hereafter, we call this regression 
algorithm “the Green algorithm”, for short. The pre-
dictive distribution of 𝒚𝒚𝒚𝒚∗ of Eqs. (27)-(29) by Green 
algorithm is obtained from observation data set 𝐷𝐷𝐷𝐷, 
kernel function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) of Eq. (8) and the variance of 
Gaussian noise 𝜌𝜌𝜌𝜌. We consider two kinds of observed 
data sets 𝐷𝐷𝐷𝐷1 and 𝐷𝐷𝐷𝐷2 provided as 𝑁𝑁𝑁𝑁 = 15 observations. 

𝐷𝐷𝐷𝐷 = {(𝑥𝑥𝑥𝑥1, 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2, 𝑦𝑦𝑦𝑦2),⋯ , (𝑥𝑥𝑥𝑥15, 𝑦𝑦𝑦𝑦15)},            (34) 
𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 = 𝑋𝑋𝑋𝑋15 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥15}, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 0.1 + 0.8

14
(𝑖𝑖𝑖𝑖 𝑖 1)  (35) 

𝐷𝐷𝐷𝐷1: 𝑦𝑦𝑦𝑦𝒊𝒊𝒊𝒊 = 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖), 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥) = 7�1 − exp(−5|𝑥𝑥𝑥𝑥 𝑥 0.5|)�  
 (𝑖𝑖𝑖𝑖 = 1, 2,⋯ , 15)   (36) 

𝐷𝐷𝐷𝐷2: 𝑦𝑦𝑦𝑦𝒊𝒊𝒊𝒊 = 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) + randomness (𝑖𝑖𝑖𝑖 = 1, 2,⋯ , 15)   (37)  
The above 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥) possesses a cusp at 𝑥𝑥𝑥𝑥 = 0.5.  

Concerning the kernel function and the noise, we 
search for a set of parameters 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌), which at-
tains maximum of log likelihood 𝑙𝑙𝑙𝑙 of Eq. (33).  
 
3.2 noise free 𝜌𝜌𝜌𝜌 = 0 fixed case 

First we show the noise free 𝜌𝜌𝜌𝜌 = 0 fixed case. Figure 
2 shows a dependence of a log likelihood 𝑙𝑙𝑙𝑙 on the 
parameter 𝑎𝑎𝑎𝑎, and the predictive distribution 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1). Left figure shows that 𝑙𝑙𝑙𝑙 attains its 
maximum at 𝑎𝑎𝑎𝑎 = 2.88. Table I shows 𝑙𝑙𝑙𝑙 takes the 
maximum value 𝑙𝑙𝑙𝑙 = −24.79 at 𝑎𝑎𝑎𝑎 = 2.88. Right figure 
of Fig. 2 illustrates the predictive distribution 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1), which means posterior distribution of 
𝒚𝒚𝒚𝒚∗ = (𝑦𝑦𝑦𝑦1∗, 𝑦𝑦𝑦𝑦2∗,⋯ , 𝑦𝑦𝑦𝑦99∗ )𝑇𝑇𝑇𝑇 for input variable X𝑀𝑀𝑀𝑀∗ =
{𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥2∗,⋯ , 𝑦𝑦𝑦𝑦99∗ } if data set 𝐷𝐷𝐷𝐷1 is observed. The shaded 
region spans between [𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝜇 , 𝜇𝜇𝜇𝜇 + 𝑠𝑠𝑠𝑠] in the vertical 
direction. It is observed that the span of the shaded 
region depends on 𝑥𝑥𝑥𝑥∗ and is the smallest in the 
neighborhood of the data points.  

In Fig. 3, we put 𝑎𝑎𝑎𝑎 = 2.88. Figure 3 shows each 
term of the variance 𝑉𝑉𝑉𝑉𝒊𝒊𝒊𝒊 = 𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) of Eq. (30). The first 
term 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗), which is shown as a black curve, is 
equivalent to the diagonal value of Fig. 1. The second 
term of Eq. (30), 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁
−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 in 𝜌𝜌𝜌𝜌 = 0 case, 

represents a shift by observation of data 𝐷𝐷𝐷𝐷1, corre-
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served data set 𝐷𝐷𝐷𝐷, 𝝁𝝁𝝁𝝁𝝁 is an 𝑀𝑀𝑀𝑀 dimensional mean 
vector, and Σ� is an 𝑀𝑀𝑀𝑀 × 𝑀𝑀𝑀𝑀 covariance matrix. The 
second term of Eq. (29) represents a shift by existence 
of observation data 𝐷𝐷𝐷𝐷, and is regarded as a contribu-
tion from off-diagonal block matrices 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀 and 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 
of Eq. (18). The diagonal entries of covariance matrix 
Σ� are equal to entries of a predictive variance vector 
𝑽𝑽𝑽𝑽=(𝑉𝑉𝑉𝑉1, 𝑉𝑉𝑉𝑉2,⋯ , 𝑉𝑉𝑉𝑉𝑀𝑀𝑀𝑀)𝑇𝑇𝑇𝑇 with its 𝑖𝑖𝑖𝑖-th entry given by:  

𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 = Σ�𝑖𝑖𝑖𝑖,𝑖𝑖𝑖𝑖 = 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) + 𝜌𝜌𝜌𝜌 𝜌 𝜌𝜌𝜌𝜌𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 �𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁�

−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 
(𝑖𝑖𝑖𝑖 = 1,2,⋯ ,𝑀𝑀𝑀𝑀),  (30) 

𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 = (𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥1), 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥2),⋯ , 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁))   (31) 

𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 = (𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗), 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥2, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗),⋯ , 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑁𝑁𝑁𝑁, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗))𝑇𝑇𝑇𝑇  (32) 
where 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇  is an 𝑖𝑖𝑖𝑖-th row vector of the matrix 𝐻𝐻𝐻𝐻𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁 
and 𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 is an 𝑖𝑖𝑖𝑖-th column vector of the matrix 
𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀. Note that each entry of the mean vector  𝝁𝝁𝝁𝝁𝝁 and 
variance vector 𝑽𝑽𝑽𝑽 is a point-wise function of 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗. We 
also introduce a standard deviation vector 𝒔𝒔𝒔𝒔 =

(𝑠𝑠𝑠𝑠1, 𝑠𝑠𝑠𝑠2,⋯ , 𝑠𝑠𝑠𝑠𝑀𝑀𝑀𝑀)𝑇𝑇𝑇𝑇, where 𝑠𝑠𝑠𝑠𝑖𝑖𝑖𝑖 = �𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖  (𝑖𝑖𝑖𝑖 = 1,2,⋯ ,𝑀𝑀𝑀𝑀).  
 
2.4 Learning the hyperparameters of Green function 

kernel 

In the case of the normalized Green function, a set 
of hyperparameters is 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌), which determines 
the predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷) specified by 
mean and covariance matrix of Eqs. (28) and (29). In 
order to infer the predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷) 
we estimate the set of hyperparameters 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) by 
maximizing log likelihood, given as follows:  

𝑙𝑙𝑙𝑙 = 𝑙𝑙𝑙𝑙(𝜽𝜽𝜽𝜽) = log 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷, 𝜽𝜽𝜽𝜽 ) 

= −
1
2𝒚𝒚𝒚𝒚

𝑇𝑇𝑇𝑇(𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁)−1𝒚𝒚𝒚𝒚 𝒚
1
2

log det (𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝑁𝑁𝑁𝑁) 

−𝑁𝑁𝑁𝑁
2

log 2π       (33) 

The parameter 𝑎𝑎𝑎𝑎 is contained in the normalized 
Green function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) = 𝐺𝐺𝐺𝐺�(𝑎𝑎𝑎𝑎: 𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) of Eq. (8) in the 
covariance matrix. A data set 𝐷𝐷𝐷𝐷 is composed of input 
variable 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 and observation 𝒚𝒚𝒚𝒚, and 𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 are substi-
tuted to the covariance matrix 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁. 

3．Numerical results 

In this section, we present numerical results, which 
are performed by Python 3.7. We put a difference in-
terval ∆= 0.01 for variable 𝑥𝑥𝑥𝑥∗ in (0,1), and take an 
input variable X𝑀𝑀𝑀𝑀∗ = {𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥2∗,⋯ , 𝑥𝑥𝑥𝑥𝑀𝑀𝑀𝑀∗ } as 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 0.01𝑖𝑖𝑖𝑖 (𝑖𝑖𝑖𝑖 =

1, 2,⋯ , 99) or equivalently 𝑀𝑀𝑀𝑀 = 99, throughout this 
section. We also give 𝑁𝑁𝑁𝑁 = 15 data.  

 
3.1 Green function basis regression 

We present numerical results concerning the ap-
plication of Green function to a Gaussian process re-
gression algorithm. Hereafter, we call this regression 
algorithm “the Green algorithm”, for short. The pre-
dictive distribution of 𝒚𝒚𝒚𝒚∗ of Eqs. (27)-(29) by Green 
algorithm is obtained from observation data set 𝐷𝐷𝐷𝐷, 
kernel function 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) of Eq. (8) and the variance of 
Gaussian noise 𝜌𝜌𝜌𝜌. We consider two kinds of observed 
data sets 𝐷𝐷𝐷𝐷1 and 𝐷𝐷𝐷𝐷2 provided as 𝑁𝑁𝑁𝑁 = 15 observations. 

𝐷𝐷𝐷𝐷 = {(𝑥𝑥𝑥𝑥1, 𝑦𝑦𝑦𝑦1), (𝑥𝑥𝑥𝑥2, 𝑦𝑦𝑦𝑦2),⋯ , (𝑥𝑥𝑥𝑥15, 𝑦𝑦𝑦𝑦15)},            (34) 
𝑋𝑋𝑋𝑋𝑁𝑁𝑁𝑁 = 𝑋𝑋𝑋𝑋15 = {𝑥𝑥𝑥𝑥1, 𝑥𝑥𝑥𝑥2,⋯ , 𝑥𝑥𝑥𝑥15}, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 = 0.1 + 0.8

14
(𝑖𝑖𝑖𝑖 𝑖 1)  (35) 

𝐷𝐷𝐷𝐷1: 𝑦𝑦𝑦𝑦𝒊𝒊𝒊𝒊 = 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖), 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥) = 7�1 − exp(−5|𝑥𝑥𝑥𝑥 𝑥 0.5|)�  
 (𝑖𝑖𝑖𝑖 = 1, 2,⋯ , 15)   (36) 

𝐷𝐷𝐷𝐷2: 𝑦𝑦𝑦𝑦𝒊𝒊𝒊𝒊 = 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) + randomness (𝑖𝑖𝑖𝑖 = 1, 2,⋯ , 15)   (37)  
The above 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥) possesses a cusp at 𝑥𝑥𝑥𝑥 = 0.5.  

Concerning the kernel function and the noise, we 
search for a set of parameters 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌), which at-
tains maximum of log likelihood 𝑙𝑙𝑙𝑙 of Eq. (33).  
 
3.2 noise free 𝜌𝜌𝜌𝜌 = 0 fixed case 

First we show the noise free 𝜌𝜌𝜌𝜌 = 0 fixed case. Figure 
2 shows a dependence of a log likelihood 𝑙𝑙𝑙𝑙 on the 
parameter 𝑎𝑎𝑎𝑎, and the predictive distribution 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1). Left figure shows that 𝑙𝑙𝑙𝑙 attains its 
maximum at 𝑎𝑎𝑎𝑎 = 2.88. Table I shows 𝑙𝑙𝑙𝑙 takes the 
maximum value 𝑙𝑙𝑙𝑙 = −24.79 at 𝑎𝑎𝑎𝑎 = 2.88. Right figure 
of Fig. 2 illustrates the predictive distribution 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1), which means posterior distribution of 
𝒚𝒚𝒚𝒚∗ = (𝑦𝑦𝑦𝑦1∗, 𝑦𝑦𝑦𝑦2∗,⋯ , 𝑦𝑦𝑦𝑦99∗ )𝑇𝑇𝑇𝑇 for input variable X𝑀𝑀𝑀𝑀∗ =
{𝑥𝑥𝑥𝑥1∗, 𝑥𝑥𝑥𝑥2∗,⋯ , 𝑦𝑦𝑦𝑦99∗ } if data set 𝐷𝐷𝐷𝐷1 is observed. The shaded 
region spans between [𝜇𝜇𝜇𝜇 𝜇𝜇𝜇𝜇𝜇 , 𝜇𝜇𝜇𝜇 + 𝑠𝑠𝑠𝑠] in the vertical 
direction. It is observed that the span of the shaded 
region depends on 𝑥𝑥𝑥𝑥∗ and is the smallest in the 
neighborhood of the data points.  

In Fig. 3, we put 𝑎𝑎𝑎𝑎 = 2.88. Figure 3 shows each 
term of the variance 𝑉𝑉𝑉𝑉𝒊𝒊𝒊𝒊 = 𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖) of Eq. (30). The first 
term 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗), which is shown as a black curve, is 
equivalent to the diagonal value of Fig. 1. The second 
term of Eq. (30), 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁
−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 in 𝜌𝜌𝜌𝜌 = 0 case, 

represents a shift by observation of data 𝐷𝐷𝐷𝐷1, corre-
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sponding to the contribution of off-diagonal block ma-
trix of covariance matrix of Eq. (18). Contribution of 
the second term is as large as the first term in the 
neighborhood of data points, but is smaller at a dis-
tance of data points. Hence, the variance 𝑉𝑉𝑉𝑉 is smaller 
if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ is closer to the data points and larger if 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ is 
further. This means that the precision increases near 
data points due to the observation of 𝐷𝐷𝐷𝐷1. Concerning 
the value of 𝑉𝑉𝑉𝑉 in Fig. 3 and that of 2s, which is a span 
of the shaded region [𝜇𝜇𝜇𝜇 𝜇 𝜇𝜇𝜇𝜇, 𝜇𝜇𝜇𝜇 + 𝑠𝑠𝑠𝑠] in Fig. 2, the equality 
2√𝑉𝑉𝑉𝑉 = 2𝑠𝑠𝑠𝑠 holds.  

Figure 4 shows 𝑎𝑎𝑎𝑎-dependence of the first and the 
second term of 𝑉𝑉𝑉𝑉𝒊𝒊𝒊𝒊 = 𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) in Eq. (30) at 𝑥𝑥𝑥𝑥∗ = 0.19 
and 0.5 in the 𝜌𝜌𝜌𝜌 = 0 case. We select 𝑥𝑥𝑥𝑥∗ = 0.19 as a 
middle position between data, and 𝑥𝑥𝑥𝑥∗ = 0.5 as a data 
point. At 𝑥𝑥𝑥𝑥∗ = 0.19 the first term 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) is mono-
tone increasing with respect to 𝑎𝑎𝑎𝑎, and the second 
term (the blue curve ) is convex upward. Whereas at 
𝑥𝑥𝑥𝑥∗ = 0.5 the first term and the second one ( the red 
curve) are the same, and are monotone increasing 
with respect to 𝑎𝑎𝑎𝑎. 

Figure 2 (left) 𝑎𝑎𝑎𝑎-dependence of 𝑙𝑙𝑙𝑙 in the 𝜌𝜌𝜌𝜌 = 0 fixed case by 
Green algorithm applied to data 𝐷𝐷𝐷𝐷1. Maximum value is 
𝑙𝑙𝑙𝑙 = −24.79 at  𝑎𝑎𝑎𝑎 = 2.88. (right) The illustration of 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷1) with (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (2.88, 0). In both 𝜌𝜌𝜌𝜌 = 0 fixed 
case and changing 𝜌𝜌𝜌𝜌 case, the same distribution is ob-
tained. The blue curve: the predictive mean 𝝁𝝁𝝁𝝁�. The 
shaded region: the correspondence to mean plus and 
minus s. Solid circles :  data set 𝐷𝐷𝐷𝐷1. The green curve: 
the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗) on which observation data set 𝐷𝐷𝐷𝐷1 
exists. 

 

Figure 3 Each term of variance 𝑉𝑉𝑉𝑉 of Eq. (30) as a point wise 
function of 𝑥𝑥𝑥𝑥∗ in the (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (2.88, 0) case by Green 
algorithm applied to data 𝐷𝐷𝐷𝐷1. The black curve : the first 
term 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) of Eq. (30). The blue curve : the second 
term 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁
−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 of Eq. (30). The red curve: the 

variance 𝑉𝑉𝑉𝑉𝑖𝑖𝑖𝑖 = 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) − 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁

−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 as a point 
wise function of 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗. 

Figure 4 𝑎𝑎𝑎𝑎-dependence of the first term 𝐺𝐺𝐺𝐺�(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) and second 
term  𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁
−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 of variance 𝑉𝑉𝑉𝑉(𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗) of Eq. (30) at 

𝑥𝑥𝑥𝑥∗ = 0.19 and 0.5 in 𝜌𝜌𝜌𝜌 = 0 case by Green algorithm 
applied to data 𝐷𝐷𝐷𝐷1. The black curve: the first term 
𝐺𝐺𝐺𝐺�(0.19,0.19). The blue curve: the second term 
𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁

−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑖𝑖𝑖𝑖 at 𝑥𝑥𝑥𝑥∗ = 0.19. The green curve: vari-
ance 𝑉𝑉𝑉𝑉(0.19). The red curve: the first term 𝐺𝐺𝐺𝐺�(0.5,0.5), 
which is equal to the second term. Therefore variance 
𝑉𝑉𝑉𝑉(0.5), difference between the first and second term, is 
exactly equal to zero. 

 

Table I  logarithm likelihood 𝑙𝑙𝑙𝑙 with optimized hyperparameters 

Data sets Green algorithm Gaussian algorithm 

𝐷𝐷𝐷𝐷1 
( 𝜌𝜌𝜌𝜌 = 0 fixed)  

𝑙𝑙𝑙𝑙 = −24.79 
𝑎𝑎𝑎𝑎 = 2.88   

𝑙𝑙𝑙𝑙 = −26.35 
𝜎𝜎𝜎𝜎 = 0.07  

𝐷𝐷𝐷𝐷1 𝑙𝑙𝑙𝑙 = −24.79  
(𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (2.88,0.0) 

𝑙𝑙𝑙𝑙 = −21.64   
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12,0.1) 

𝐷𝐷𝐷𝐷2 
( 𝜌𝜌𝜌𝜌 = 0 fixed) 

𝑙𝑙𝑙𝑙 = −30.99 
𝑎𝑎𝑎𝑎 = 5.61 

𝑙𝑙𝑙𝑙 = −32.52 
𝜎𝜎𝜎𝜎 = 0.061  

𝐷𝐷𝐷𝐷2 𝑙𝑙𝑙𝑙 = −30.00 
(𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (0.01,0.8) 

𝑙𝑙𝑙𝑙 = −30.29 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.20,1.0) 

 
3.3 Comparison with Gaussian kernel regression in 

the noise free 𝜌𝜌𝜌𝜌 = 0 fixed case 

We here compare the results of Green algorithm 
obtained so far with the case of Gaussian kernel 
function, which is most widely used. We here call this 
algorithm “the Gaussian algorithm”, for short. As in 
the case of normalized Green function, we here adopt 
a normalized Gaussian kernel function, 

 𝑣𝑣𝑣𝑣(𝑥𝑥𝑥𝑥, 𝑥𝑥𝑥𝑥′) = 1
√2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎

exp �− (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′)2

2𝜎𝜎𝜎𝜎2
�.         (38) 

The parameter 𝜎𝜎𝜎𝜎 of Eq. (38) corresponds to parame-
ters 𝜃𝜃𝜃𝜃1, 𝜃𝜃𝜃𝜃2  of a typical Gaussian kernel function 

𝜃𝜃𝜃𝜃1exp �− (𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥𝑥′)2

𝜃𝜃𝜃𝜃2
�, 2), 5) as 2𝜎𝜎𝜎𝜎2 = 𝜃𝜃𝜃𝜃2 and 1

√2𝜋𝜋𝜋𝜋𝜎𝜎𝜎𝜎
= 𝜃𝜃𝜃𝜃1.  

We search for a set of hyperparameters 𝜽𝜽𝜽𝜽 = (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌), 
which attains maximum of log likelihood 𝑙𝑙𝑙𝑙 2), 5). 

Figure 5 shows 𝜎𝜎𝜎𝜎-dependence of log likelihood 𝑙𝑙𝑙𝑙 in 
the noise free 𝜌𝜌𝜌𝜌 = 0 fixed case of Gaussian algorithm, 
and the predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1). Left fig-
ure shows the value of 𝑙𝑙𝑙𝑙 increases if 0 < 𝜎𝜎𝜎𝜎 < 0.07 
and attains its maximum value 𝑙𝑙𝑙𝑙 = −26.35 at 𝜎𝜎𝜎𝜎 =

0.07 and then decreases rapidly. The maximum value 
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of 𝑙𝑙𝑙𝑙 is also shown in Table I. Right figure shows a 
predictive distribution in the case of Gaussian kernel, 
which is smoother than the Green kernel. 

Comparing Green and Gaussian algorithm in the 
case of 𝜌𝜌𝜌𝜌 = 0 fixed for data 𝐷𝐷𝐷𝐷1 of Table I, one finds 
that 𝑙𝑙𝑙𝑙 is larger in the Green algorithm case. The 
𝑎𝑎𝑎𝑎-dependence of 𝑙𝑙𝑙𝑙 shows an obvious peak in  Green 
algorithm case. On the other hand, 𝑙𝑙𝑙𝑙 changes rapidly 
in the Gaussian case. From Figs. 2 and 5, we can ob-
serve that the blue curve of mean 𝝁𝝁𝝁𝝁� of Green algo-
rithm coincides with the green curve of the function 
𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗) better. The Green algorithm is considered to be 
suitable for predicting the function which possesses 
cusps. This fact is reflected by the fact that 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
has a pointed peak at 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦 whereas Gaussian func-
tion is a smooth function.  
 

Figure 5 (left) 𝜎𝜎𝜎𝜎-dependence of 𝑙𝑙𝑙𝑙 in the 𝜌𝜌𝜌𝜌 = 0 fixed case by 
Gaussian algorithm applied to data 𝐷𝐷𝐷𝐷1. Maximum value is 
𝑙𝑙𝑙𝑙 = −26.35 at 𝜎𝜎𝜎𝜎 = 0.07. (right) The illustration of 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷1) with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.07, 0). The blue curve: the 
predictive mean 𝝁𝝁𝝁𝝁�. The shaded region: the correspond-
ence to mean plus and minus s. Solid circles: data set 
𝐷𝐷𝐷𝐷1. The green curve: the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗). 

 

3.4 The case of 𝜌𝜌𝜌𝜌 ≥ 0 

Next, we take a Gaussian noise term 𝜌𝜌𝜌𝜌 into ac-
count. In this case we change a pair of hyperparame-
ters 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) in the Green algorithm, and 𝜽𝜽𝜽𝜽 = (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) 
in the Gaussian algorithm for data 𝐷𝐷𝐷𝐷1.  

In the Green algorithm, Fig. 6 shows 𝑎𝑎𝑎𝑎-dependence 
of 𝑙𝑙𝑙𝑙 for 𝜌𝜌𝜌𝜌 = 0.0, 0.1, 0.2,⋯ , 1.0. For every fixed 𝜌𝜌𝜌𝜌, 𝑙𝑙𝑙𝑙 
has a maximum with respect to 𝑎𝑎𝑎𝑎. The maximum 
value of 𝑙𝑙𝑙𝑙 is monotone decreasing with respect to 𝜌𝜌𝜌𝜌. 
Hence 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −24.79 at (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =

(2.88, 0.0). Therefore predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1) 
by Green algorithm in the case of learning two pa-
rameters 𝑎𝑎𝑎𝑎 and 𝜌𝜌𝜌𝜌 is the same as that in the 𝜌𝜌𝜌𝜌 = 0 
fixed case of Fig. 2.   

Figure 7 shows 𝜎𝜎𝜎𝜎-dependence of 𝑙𝑙𝑙𝑙 under the Gaussian 
algorithm for 𝜌𝜌𝜌𝜌 = 0.0, 0.1, 0.2,⋯ , 1.0, and the predictive 

distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1) with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1). Left 
figure shows that 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −21.64 at 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1), which is also shown in Table I. 
Right figure shows that mean 𝝁𝝁𝝁𝝁� 2), 5) gets smoother 
than in the case of 𝜌𝜌𝜌𝜌 = 0 and shaded region is wider 
and smoother.  

Comparing Green algorithm and Gauss algorithm, 
the maximum value of 𝑙𝑙𝑙𝑙 of Green algorithm gets a 
little smaller than that of Gaussian algorithm, as is 
shown in Table I.  

 
Figure 6 𝑎𝑎𝑎𝑎 and 𝜌𝜌𝜌𝜌-dependence of 𝑙𝑙𝑙𝑙 by Green algorithm applied to 

data 𝐷𝐷𝐷𝐷1. Maximum value is 𝑙𝑙𝑙𝑙 = −24.79 at (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =
(2.88, 0.0). 

Figure 7 (left) 𝜎𝜎𝜎𝜎 and 𝜌𝜌𝜌𝜌-dependence of 𝑙𝑙𝑙𝑙 by Gaussian algorithm 
applied to data 𝐷𝐷𝐷𝐷1. Maximum value is 𝑙𝑙𝑙𝑙 = −21.64 at 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1). (right) The illustration of 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷1) 
with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1). The blue curve: the predictive 
mean 𝝁𝝁𝝁𝝁�. The shaded region: the correspondence to 
mean plus and minus 𝑠𝑠𝑠𝑠. Solid circles: data set 𝐷𝐷𝐷𝐷1. The 
green curve: the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗). 

 

3.5 Introduction of randomness associated with 𝒚𝒚𝒚𝒚 

We finally introduce randomness in 𝒚𝒚𝒚𝒚 of observa-
tion data 𝐷𝐷𝐷𝐷, which is written as 𝐷𝐷𝐷𝐷2, following the 
section 6.4.2 in the reference2). The dependences of 𝑙𝑙𝑙𝑙 
on the hyperparameters by Green and Gaussian algo-
rithms are shown in Figs. 8 and 9. 

We first investigate the Green algorithm. Left fig-
ure of Fig. 8 shows 𝑎𝑎𝑎𝑎-dependence of 𝑙𝑙𝑙𝑙 for 𝜌𝜌𝜌𝜌 = 0.0, 0.1,

⋯ , 1.0. Table I shows that 𝑙𝑙𝑙𝑙 in the 𝜌𝜌𝜌𝜌 = 0 fixed case 
takes its maximum 𝑙𝑙𝑙𝑙 = −30.99 at 𝑎𝑎𝑎𝑎 = 5.61. If we 
change 𝜌𝜌𝜌𝜌, 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −30.00 at 
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of 𝑙𝑙𝑙𝑙 is also shown in Table I. Right figure shows a 
predictive distribution in the case of Gaussian kernel, 
which is smoother than the Green kernel. 

Comparing Green and Gaussian algorithm in the 
case of 𝜌𝜌𝜌𝜌 = 0 fixed for data 𝐷𝐷𝐷𝐷1 of Table I, one finds 
that 𝑙𝑙𝑙𝑙 is larger in the Green algorithm case. The 
𝑎𝑎𝑎𝑎-dependence of 𝑙𝑙𝑙𝑙 shows an obvious peak in  Green 
algorithm case. On the other hand, 𝑙𝑙𝑙𝑙 changes rapidly 
in the Gaussian case. From Figs. 2 and 5, we can ob-
serve that the blue curve of mean 𝝁𝝁𝝁𝝁� of Green algo-
rithm coincides with the green curve of the function 
𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗) better. The Green algorithm is considered to be 
suitable for predicting the function which possesses 
cusps. This fact is reflected by the fact that 𝐺𝐺𝐺𝐺(𝑥𝑥𝑥𝑥, 𝑦𝑦𝑦𝑦) 
has a pointed peak at 𝑥𝑥𝑥𝑥 = 𝑦𝑦𝑦𝑦 whereas Gaussian func-
tion is a smooth function.  
 

Figure 5 (left) 𝜎𝜎𝜎𝜎-dependence of 𝑙𝑙𝑙𝑙 in the 𝜌𝜌𝜌𝜌 = 0 fixed case by 
Gaussian algorithm applied to data 𝐷𝐷𝐷𝐷1. Maximum value is 
𝑙𝑙𝑙𝑙 = −26.35 at 𝜎𝜎𝜎𝜎 = 0.07. (right) The illustration of 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷1) with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.07, 0). The blue curve: the 
predictive mean 𝝁𝝁𝝁𝝁�. The shaded region: the correspond-
ence to mean plus and minus s. Solid circles: data set 
𝐷𝐷𝐷𝐷1. The green curve: the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗). 

 

3.4 The case of 𝜌𝜌𝜌𝜌 ≥ 0 

Next, we take a Gaussian noise term 𝜌𝜌𝜌𝜌 into ac-
count. In this case we change a pair of hyperparame-
ters 𝜽𝜽𝜽𝜽 = (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) in the Green algorithm, and 𝜽𝜽𝜽𝜽 = (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) 
in the Gaussian algorithm for data 𝐷𝐷𝐷𝐷1.  

In the Green algorithm, Fig. 6 shows 𝑎𝑎𝑎𝑎-dependence 
of 𝑙𝑙𝑙𝑙 for 𝜌𝜌𝜌𝜌 = 0.0, 0.1, 0.2,⋯ , 1.0. For every fixed 𝜌𝜌𝜌𝜌, 𝑙𝑙𝑙𝑙 
has a maximum with respect to 𝑎𝑎𝑎𝑎. The maximum 
value of 𝑙𝑙𝑙𝑙 is monotone decreasing with respect to 𝜌𝜌𝜌𝜌. 
Hence 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −24.79 at (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =

(2.88, 0.0). Therefore predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1) 
by Green algorithm in the case of learning two pa-
rameters 𝑎𝑎𝑎𝑎 and 𝜌𝜌𝜌𝜌 is the same as that in the 𝜌𝜌𝜌𝜌 = 0 
fixed case of Fig. 2.   

Figure 7 shows 𝜎𝜎𝜎𝜎-dependence of 𝑙𝑙𝑙𝑙 under the Gaussian 
algorithm for 𝜌𝜌𝜌𝜌 = 0.0, 0.1, 0.2,⋯ , 1.0, and the predictive 

distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1) with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1). Left 
figure shows that 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −21.64 at 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1), which is also shown in Table I. 
Right figure shows that mean 𝝁𝝁𝝁𝝁� 2), 5) gets smoother 
than in the case of 𝜌𝜌𝜌𝜌 = 0 and shaded region is wider 
and smoother.  

Comparing Green algorithm and Gauss algorithm, 
the maximum value of 𝑙𝑙𝑙𝑙 of Green algorithm gets a 
little smaller than that of Gaussian algorithm, as is 
shown in Table I.  

 
Figure 6 𝑎𝑎𝑎𝑎 and 𝜌𝜌𝜌𝜌-dependence of 𝑙𝑙𝑙𝑙 by Green algorithm applied to 

data 𝐷𝐷𝐷𝐷1. Maximum value is 𝑙𝑙𝑙𝑙 = −24.79 at (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =
(2.88, 0.0). 

Figure 7 (left) 𝜎𝜎𝜎𝜎 and 𝜌𝜌𝜌𝜌-dependence of 𝑙𝑙𝑙𝑙 by Gaussian algorithm 
applied to data 𝐷𝐷𝐷𝐷1. Maximum value is 𝑙𝑙𝑙𝑙 = −21.64 at 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1). (right) The illustration of 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷1) 
with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.12, 0.1). The blue curve: the predictive 
mean 𝝁𝝁𝝁𝝁�. The shaded region: the correspondence to 
mean plus and minus 𝑠𝑠𝑠𝑠. Solid circles: data set 𝐷𝐷𝐷𝐷1. The 
green curve: the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗). 

 

3.5 Introduction of randomness associated with 𝒚𝒚𝒚𝒚 

We finally introduce randomness in 𝒚𝒚𝒚𝒚 of observa-
tion data 𝐷𝐷𝐷𝐷, which is written as 𝐷𝐷𝐷𝐷2, following the 
section 6.4.2 in the reference2). The dependences of 𝑙𝑙𝑙𝑙 
on the hyperparameters by Green and Gaussian algo-
rithms are shown in Figs. 8 and 9. 

We first investigate the Green algorithm. Left fig-
ure of Fig. 8 shows 𝑎𝑎𝑎𝑎-dependence of 𝑙𝑙𝑙𝑙 for 𝜌𝜌𝜌𝜌 = 0.0, 0.1,

⋯ , 1.0. Table I shows that 𝑙𝑙𝑙𝑙 in the 𝜌𝜌𝜌𝜌 = 0 fixed case 
takes its maximum 𝑙𝑙𝑙𝑙 = −30.99 at 𝑎𝑎𝑎𝑎 = 5.61. If we 
change 𝜌𝜌𝜌𝜌, 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −30.00 at 
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(𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (0.01, 0.8). Right figure of Fig. 8 represents the 
predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷2) in the (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =

(0.01, 0.8) case. 
We next investigate the Gaussian algorithm. Left 

figure of Fig. 9 shows 𝜎𝜎𝜎𝜎-dependence of 𝑙𝑙𝑙𝑙 for 𝜌𝜌𝜌𝜌 =

0.0, 0.1, 0.2,⋯ , 2.0. Table I shows that 𝑙𝑙𝑙𝑙, with 𝜌𝜌𝜌𝜌 = 0 
fixed, takes its maximum 𝑙𝑙𝑙𝑙 = −32.52 at 𝜎𝜎𝜎𝜎 = 0.061. If 
we change 𝜌𝜌𝜌𝜌, 𝑙𝑙𝑙𝑙 takes its maximum 𝑙𝑙𝑙𝑙 = −30.29 at 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.20, 1.0). Right figure of Fig. 9 represents the 
predictive distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷2) in the (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) =

(0.20, 1.0) case. 
Comparing these two algorithms in Figs. 8 and 9, 

and Table I, we find that in both 𝜌𝜌𝜌𝜌 = 0 fixed case and 
the case of changing 𝜌𝜌𝜌𝜌, 𝑙𝑙𝑙𝑙 takes a larger value in the 
Green algorithm case than in the Gaussian algorithm 
case.  

In the cusp cases, Green algorithm shows almost 
the same or a little better performance, compared 
with Gaussian algorithm. 

 

Figure 8. (left) 𝑎𝑎𝑎𝑎 and 𝜌𝜌𝜌𝜌-dependence of 𝑙𝑙𝑙𝑙 by Green algorithm 
applied to data 𝐷𝐷𝐷𝐷2. Maximum value is 𝑙𝑙𝑙𝑙 = −30.00 at 
(𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (0.01, 0.8). (right) The illustration of 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷2) 
with (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) = (0.01, 0.8). The blue curve: the predictive 
mean 𝝁𝝁𝝁𝝁�. The shaded region: the correspondence to 
mean plus and minus 𝑠𝑠𝑠𝑠. Solid circles :  data set  𝐷𝐷𝐷𝐷2. 
The green curve: the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗). 

 

 
Figure 9. (left) 𝜎𝜎𝜎𝜎 and 𝜌𝜌𝜌𝜌-dependence of 𝑙𝑙𝑙𝑙 by Gaussian algorithm 

applied to data 𝐷𝐷𝐷𝐷2. Maximum value is 𝑙𝑙𝑙𝑙 = −30.29 at 
(𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.20, 1.0). (right) The illustration of 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ ,𝐷𝐷𝐷𝐷2) 
with (𝜎𝜎𝜎𝜎, 𝜌𝜌𝜌𝜌) = (0.20, 1.0). The blue curve: the predictive 
mean 𝝁𝝁𝝁𝝁�. The shaded region: the correspondence to 
mean plus and minus 𝑠𝑠𝑠𝑠. Solid circles: data set 𝐷𝐷𝐷𝐷2. The 
green curve: the function 𝐹𝐹𝐹𝐹(𝑥𝑥𝑥𝑥∗). 

4. Discussions 

In order to take more information concerning co-
variance of 𝑦𝑦𝑦𝑦 between 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗, we now investigate 
the covariance matrix Σ� of Eq. (29) hereafter. Gener-
ating a mesh of 𝑀𝑀𝑀𝑀 = 99, we introduce 99 × 99 matrix  
Σ� = �Σ�𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗�1≤𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗≤99 whose (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗)-th entry is also regarded 

as a function in 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 0.01𝑖𝑖𝑖𝑖 and 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗ = 0.01𝑗𝑗𝑗𝑗 (𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 =

1, 2,⋯ ,99). That is to say, the covariance matrix of the 
predictive distribution is defined as a point-wise 
function, which is given as:  

Σ�𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 = Σ��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗� = 𝐺𝐺𝐺𝐺��𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗� + 𝜌𝜌𝜌𝜌𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗
− 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖

𝑇𝑇𝑇𝑇 �𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁�
−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑗𝑗𝑗𝑗 

 = 𝐺𝐺𝐺𝐺�(0.01𝑖𝑖𝑖𝑖, 0.01𝑗𝑗𝑗𝑗) + 𝜌𝜌𝜌𝜌𝛿𝛿𝛿𝛿𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 − 𝒉𝒉𝒉𝒉𝑀𝑀𝑀𝑀,𝑁𝑁𝑁𝑁,𝑖𝑖𝑖𝑖
𝑇𝑇𝑇𝑇 �𝐻𝐻𝐻𝐻𝑁𝑁𝑁𝑁,𝑁𝑁𝑁𝑁 + 𝜌𝜌𝜌𝜌𝐼𝐼𝐼𝐼𝑁𝑁𝑁𝑁�

−1𝒉𝒉𝒉𝒉𝑁𝑁𝑁𝑁,𝑀𝑀𝑀𝑀,𝑗𝑗𝑗𝑗 
(𝑖𝑖𝑖𝑖, 𝑗𝑗𝑗𝑗 = 1,2,⋯ ,99).           (39) 

Figure 10 shows the covariance matrix Σ�𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗 of Eq. 
(39) corresponding to predictive distribution 
𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1) of Fig. 2, where 𝑥𝑥𝑥𝑥, y, z directions corre-
spond to 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 0.01𝑖𝑖𝑖𝑖, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗ = 0.01𝑗𝑗𝑗𝑗, and Σ�𝑖𝑖𝑖𝑖,𝑗𝑗𝑗𝑗, respectively. 
Left and right figures are two-dimensional contour 
and three-dimensional plot of covariance at (𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗, 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗), 
respectively. Due to the observation of data 𝐷𝐷𝐷𝐷1, co-
variance between 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ and 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗ localizes around 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗ 
line. The diagonal value at 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗  is equal to the 

variance, and its square root, which is a standard 
deviation, corresponds to the span of shaded region of 
Fig. 2 as a point-wise function of 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗. Figure 11 shows 
the covariance matrix for 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷2) of Fig. 8. Since 
𝜌𝜌𝜌𝜌 ≠ 0, the values on diagonal 𝑥𝑥𝑥𝑥𝑖𝑖𝑖𝑖∗ = 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗∗ points contain 

the noise term 𝜌𝜌𝜌𝜌.  

5．Conclusion 

Let us summarize the obtained results. In this pa-
per, we proposed and implemented a regression algo-
rithm based on Green function theory. We propose a 
covariance matrix composed of the normalized Green 
function. By applying Bayesian approach, the covar-
iance matrix gives a predictive distribution. The 
Green algorithm shows almost the same or slightly 
superior performance compared with Gaussian algo-
rithm if 𝑓𝑓𝑓𝑓(𝑥𝑥𝑥𝑥)  possesses cusps. 
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Figure 10. The plot of covariance matrix Eq. (39) of predictive 

distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷1) of Fig. 2 with (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =
(2.88, 0) by Green algorithm. (left) 2-dimensional con-
tour, (right) 3-dimensional plot.  

 

 
Figure 11. The plot of covariance matrix Eq. (39) of predictive 

distribution 𝑝𝑝𝑝𝑝(𝒚𝒚𝒚𝒚∗|𝑋𝑋𝑋𝑋𝑀𝑀𝑀𝑀∗ , 𝐷𝐷𝐷𝐷2) of Fig. 8 with (𝑎𝑎𝑎𝑎, 𝜌𝜌𝜌𝜌) =
(0.01, 0.8) by Green algorithm. (left) 2-dimensional 
contour, (right) 3-dimensional plot. 
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